Journal of Medical Sciences at NEOMED

Volume 4, Issue 1, May 2025

ICUS to ICU: A Case of a Germline DDX41 Mutation in a Patient with Idiopathic Cytopenia of Undetermined Significance (ICUS)

Maximilian Brockwell, BS^{1†}, Jordan Hatch, DO^{1,2†}, John Jakob, MD^{1,3}*

- College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272
- Department of Internal Medicine, Summa Health System, Akron, OH, 44304
- Department of Medical Oncology, Summa Health System, Akron, OH, 44304
- * Corresponding author
- † Joint first authorship

ABSTRACT

Genetic testing for both somatic and germline mutations is a crucial component of the modern workup of cytopenia, myeloid neoplasms, and bone marrow failure syndromes. However, the specific genes tested in each clinical scenario are continually evolving, making standards for genetic testing a moving target. Germline mutation of the DDX41 gene is associated with familial acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), but its role in idiopathic cytopenia of undetermined significance (ICUS) is less clear. We present the case of a 65-year-old male with a history of rheumatoid arthritis (RA) found to have ICUS with a germline DDX41 mutation. The patient's cytopenia was long-standing, present at least 3 years prior to initiation of immunosuppression for his RA. Two months after his initial hematologic evaluation, the patient was admitted to the ICU for neutropenic enterocolitis. The patient was severely neutropenic and required a right hemicolectomy. Subsequent workup revealed a pathogenic germline DDX41 mutation. A repeat bone marrow biopsy 8 months later was consistent with MDS/AML as defined by the 2022 International Consensus Classification Guidelines. This patient, asymptomatic for years, went through an ICU admission and emergent surgery due to neutropenic enterocolitis before his germline DDX41 mutation was discovered. Expanded guidelines regarding somatic and germline genetic testing will likely prove helpful in delineating the etiology of ICUS and initiating early management in the future.

Keywords: DDX41, idiopathic cytopenia of undetermined significance, genetic testing, germ-line mutation, myelodysplastic syndrome

INTRODUCTION

from indolent to rapidly destructive disease. It is estimated that 5-10% of cancers are driven by inherited workup is unclear. mutations, and in recent years, there has been a broad effort to stratify the risk of aggressive malignancies in The diagnostic criteria for ICUS include the presence of relation to their genetic profile. One gene implicated in peripheral cytopenia, absent or mild dysplasia (<10%),

Comprehensive Cancer Network (NCCN) Guidelines recommend observation once annually in patients with Hematologic malignancies vary significantly in course, Idiopathic Cytopenia of Undetermined Significance (ICUS); however, the optimal approach to the genetic

the development of neoplasms is the DEAD-box helicase blast cells <5%, and otherwise not meeting MDS 41 (DDX41), an RNA helicase expressed ubiquitously in criteria. The clinical course can involve evolution human bone marrow.2 Germline mutations of DDX41 are from an initial cytopenia of one or more cell lines, which associated with autosomal dominant familial syndromes is then further defined by genetic analysis to determine of acute myeloid leukemia (AML) and myelodysplastic clonality. Approximately 40% of ICUS cases are syndrome (MDS).³⁻⁸ Currently, there is guidance determined to derive from clonal somatic mutations, i.e., regarding specific genes for somatic and germline testing representing clonal cytopenia of undetermined in the workup of MDS and AML. 9,10 National significance (CCUS). 11-13 Alternatively, ICUS patients

increasing the risk of neoplasm, i.e., hereditary myeloid patient presented to the emergency department with a malignancy predisposition syndromes (HMMPS).¹⁴ However, only a subset of these patients will progress to with neutropenic enterocolitis. His WBC count on MDS or AML. We present a case of ICUS with a admission was 1.2 $K/\mu L$ with an ANC of $638/\mu L$. germline DDX41 mutation leading to hospitalization in Computed tomography of his abdomen showed the ICU, with eventual progression to malignancy, and inflammatory changes of the ascending and proximal explore the implications of germline testing.

CASE PRESENTATION

A 66-year-old male with seropositive rheumatoid arthritis (RA) and heavy alcohol use was referred to our hematology office with leukopenia. His RA was previously treated with sulfasalazine, but it was discontinued due to leukopenia. He was subsequently needed for ANC $<1000/\mu L$. on hydroxychloroquine with persistent leukopenia. On chart review, his leukopenia predated sulfasalazine by at least 3 years. He drank 14 units of alcohol weekly. The patient had no personal history of major infections or hematologic/oncologic disease, but his family history was significant for lymphoma in his father. The physical exam was unremarkable without splenomegaly. Recent labs showed a leukocyte count (WBC) of $1.7k/\mu L$ (normal $3.6 - 10.7k/\mu L$) with an absolute neutrophil count (ANC) of 680/µL (normal 2500 – 7000 cells/μL). He was mildly anemic with a hemoglobin of 12.2 g/dL (normal 13.2 - 16.6 g/dL), and his platelet count was normal. The peripheral smear showed severe leukopenia with absolute mature neutropenia and absolute lymphopenia; blasts and dysgranulopoiesis were not identified.

Our initial impression was that his cytopenia was likely related to an autoimmune process, given his history of RA. Other differential diagnoses included Felty syndrome, which was felt to be less likely in the absence of splenomegaly or infectious complications. Large granular lymphocytic (LGL) leukemia was also felt to be unlikely, given the isolated leukopenia without LGL cells on peripheral smear. MDS was also considered; however definitive diagnosis would require a bone marrow biopsy, and there was reluctance to perform testing while clinically asymptomatic. The patient was advised to follow up with hematology if his leukopenia worsened or if he developed infectious complications.

and their family members may have a germline mutation Two months after his hematologic assessment, the fever and abdominal pain. He was admitted to the ICU transverse colon. The patient underwent an exploratory laparotomy, which revealed impending hepatic rupture, so a right hemicolectomy was performed (Fig. 1). Given his hemodynamic instability and severe neutropenia with nadir ANC of 270/μL, he was treated with a single 480 mcg dose of TBO-Filgrastim. His WBC count gradually improved to 2.4 K/ μ L with an ANC of 1505/ μ L. On discharge, the patient was started on pegfilgrastim as

Figure 1. Ischemic Changes of Hepatic Flexure

An outpatient bone marrow biopsy was performed 16 days after his initial TBO-Filgrastim dose, revealing normocellular marrow with increased myeloblasts at 6-8% of total cellularity (Fig. 3). His karyotype and extended panel fluorescence in situ hybridization (FISH) for MDS were normal (Table 1). Next-generation

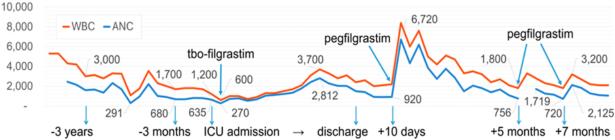


Figure 1. White Blood Cell (WBC) Count and Absolute Neutrophil Count (ANC) Trend.

Genes assessed by NGS	NGS Results	FISH Probes	FISH Results
DNA			
ASXL1, BCOR, BCORL1, BRAF, CALR, CBL, CEBPA, CUX1, DDX41, DNMT3A, ETV6, EZH2, FLT3, GATA2, HRAS, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NF1, NPM1, NRAS, PDGFRA, PHF6, PPM1D, PTEN, PTPN11, RUNX1, SETBP1, SF3B1, SRSF2, STAG2, STAT3, TET2, TP53, U2AF1, WT1, ZRSR2	DDX41: c.3G>A/ p.M1? VAF: 49%	+19, chromosome 20, 5q-/-5/ +5, 7q-/-7, p53(17p13.1)/NF1 (17q11), ETV6(12p13), KMT2A (MLL) (11q23), RPN/MECOM (3q)	No alterations

Table 1. Initial Bone Marrow Biopsy DNA Next Generation Sequencing + FISH Probe

Genes assessed by NGS	Genes assessed by NGS RNA	NGS Results
DNA		
ABL1, ASXL1, BCOR,	ABL1, ABL2, AFDN (MLLT4), ALK, BCL11B,	CUX1:
BCORL1, BRAF, CALR,	BCL2, BCL3, BCL6, BCR, BIRC3, BLNK, CBFB,	c.2093 2094delCT/
CBL, CDKN2A, CEBPA,	CBL, CCND1, CCND2, CCND3, CD274, CD28,	6.2073_2074dc1617
CSF3R, CUX1, DDX41,	CDK6, CDKN2A, CEBPA, CEBPD, CEBPE, CE-	p.T698Sfs*16
DNMT3A, EED, ETNK1,	BPG, CHD1, CHIC2, CIITA, CREBBP, CRLF2,	VAF: 4.9%
ETV6, EZH2, FBXW7, FLT3,	CSF1R, CTLA4, DEK, DGKH, DUSP22, EBF1,	VIII. 4.570
GATA1, GATA2, GNAS,	EIF4A1, EPOR, ERG, ETV6, FGFR1, FLT3,	
IDH1, IDH2, IKZF1, JAK2, JAK3, KDM6A, KIT,	FOXP1, GLIS2, HLF, ID4, IKZF1, IKZF2, IKZF3, IL2RB, IRF4, IRF8, ITK, JAK2, KAT6A, KLF2,	
KMT2A, KRAS, LUC7L2,	KMT2A, LMO1, LMO2, LYN, MALT1,	
MPL, MYD88, NF1,	MECOM, MEF2D, MLF1, MLLT10, MRTFA	DDX41:
NOTCH1, NPM1, NRAS,	(MKL1), MUC1, MYC, MYH11, NF1, NFKB2,	c.3G>A/p.M1?
PAX5, PHF6, PIGA, PPM1D,	NOTCH1, NTRK3, NUP214, NUP98, NUTM1,	VAF: 18.7%
PRPF8, PTEN, PTPN11,	P2RY8, PAG1, PAX5, PBX1, PDCD1,	VAI: 10.770
RAD21, RIT1, RUNX1, SET-	PDCD1LG2, PDGFRA, PDGFRB, PICALM,	
BP1, SF3B1, SH2B3,	PML, PRDM16, PTK2B, RARA, RBM15, ROS1,	
SMC1A, SMC3, SRSF2,	RUNX1, RUNX1T1, SEMA6A, SETD2, STIL,	
STAG2, STAT3, STAT5B,	SYK, TAL1, TCF3, TFG, TLX1, TLX3, TP63,	
SUZ12, TET2, TP53, U2AF1,	TSLP, TYK2, VAV1, ZCCHC7, ZNF384	
WT1, ZRSR2		

Table 2. Second Bone Marrow Biopsy DNA and RNA Next Generation Sequencing

sequencing (NGS) revealed a pathologic DDX41 (Table 2). The patient was placed on danazol for site. The variant allele frequency (VAF) was 49.3%, hematologist/oncologist. suggestive of a germline mutation, which was later confirmed with germline testing. The second copy of DDX41 remained intact. Importantly, the germline DDX41 mutation did not define clonality in his Longitudinal data focusing on the evolution of ICUS to cytopenia.

mutation ((c.3G>A (pM1?)) eliminating the protein start treatment and continues to follow up with his

DISCUSSION

MDS or AML in patients with germline DDX41 mutations is limited, in part because separate somatic This DDX41 germline mutation was consistent with a mutations are often identified after progression has familial MDS/AML predisposition syndrome. A repeat occurred and, therefore, are no longer categorized as bone marrow biopsy 8 months later revealed an increase ICUS. Presumably, in such scenarios, a CCUS state of in myeloblasts to 12% with immunostain for CD34 unclear duration occurred prior to progression to MDS immature cells representing 10-15% of cellularity. These or AML. In this case, the patient met the criteria for results were interpreted as consistent with MDS/AML, classification as MDS/AML, which is an overlap as defined by the 2022 International Consensus disorder defined as displaying one or more cytopenias Classification Guidelines. Repeat NGS also identified with 10-19% blasts on BMB with myelodysplasiaa CUX1 mutation (c.2093_2094delCT/p.T698Sfs*16), related gene mutations. 16 It is also possible that this which was not observed in the patient's original BMB ICUS patient with a DDX41 germline mutation, notably

germline mutations frequently DDX41 ASXL1, or CUX1.^{17,18} This patient was discovered to relapse-free survival compared to wild-type DDX41 in have a presumably somatic CUX1 mutation with VAF AML.^{6,19} of 4.9% on his second BMB that was not present on initial BMB. Of note, a recent prospective study found While guidelines for the workup of MDS and AML that patients with CCUS with negative initial NGS were found to have DDX41 mutations on extended sequencing, implying this may be an under-identified driver of disease.

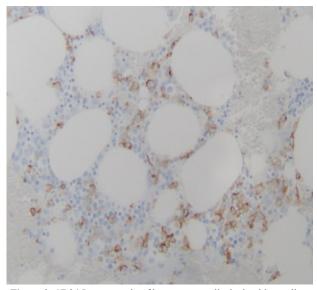


Figure 3. CD34 Immunostain of bone marrow displaying blast cells

In this case of ICUS, a germline DDX41 mutation was confirmed, but only one mutated allele was identified. It is likely that this patient's lifelong haploinsufficiency ICUS germline DDX41 mutations. was sufficient to predispose this patient to developing MDS. Another possibility is that the intact allele's transcription or function could have been altered, resulting in altered activity. Noting the patient's CUX1 mutation identified on the second NGS, which was not present originally, it is also possible this could have been the driver of malignant evolution. Unlike the classic progression from ICUS to CCUS and then MDS or 2. AML, this patient was not identified to have CCUS and instead progressed directly from ICUS to MDS/AML.

In patients with hematologic congenital syndrome/ disorder, including DDX41 mutations, the odds ratio of 3. malignant transformation compared to those without the genetic abnormalities was 5.58.5 Another recent study found that 60% of ICUS patients with a germline DDX41 mutation progressed to MDS, suggesting a DDX41 germline mutated myeloid 4. neoplasms are associated with more severe bone marrow failure, higher risk disease, and increased risk of

without clonal changes identified on workup, could have progression to AML compared to those with purely an unidentified somatic mutation driving disease somatic mutations,⁵ although there is no significant progression. Patients with hematologic malignancy and change in overall survival.^{4,5} While there appears to be a have more severe risk profile associated with germline accompanying somatic mutations, including a second mutated DDX41 myeloid neoplasm, it has also displayed somatic DDX41 mutation, TET2, SRSF2, DNMT3A, an improved response to treatment and prolonged

> increasingly call for both germline and somatic mutation analysis, ⁷⁻¹⁰ guidelines are lacking when it comes to the workup of patients with ICUS. The efficacy of nextgeneration sequencing in the assessment of myeloid neoplasms has been well established.²⁰ With the risk of severe disease progression and the efficacy of NGS present strong assessment, ICUS and CCUS opportunities for establishing more advanced testing guidelines. One expansion to aid clinical decision-making supported by this case and recent literature¹⁵ would be the inclusion of DDX41 as a standard in NGS for ICUS and CCUS, as it is already included in MDS and AML workup. When identifying contributing germline mutations in ICUS, patients and their families would receive a diagnosis earlier, which would improve monitoring and registry enrollment.

CONCLUSION

ICUS presents a diagnostic challenge given the paucity of guidelines for genetic analysis and the possibility of an underlying HMMPS. Germline DDX41 mutations are associated with higher risk of progression to MDS and more severe disease such as AML, however systemic therapy improves the clinical course. DDX41 is an optimal candidate to be included in standard NGS panels for ICUS to accelerate diagnosis of HMMPS. Future studies should focus on the optimal timeline for genetic testing and further define criteria for risk stratification in

REFERENCES

- Garber JE, Offit K. Hereditary cancer predisposition syndromes. J Clin Oncol. 2005 Jan 10;23(2):276-92. doi: 10.1200/JCO.2005.10.042. PMID: 15637391.
- U.S. National Library of Medicine. DDX41 deadbox helicase 41 [homo sapiens (human)]. National Center for Biotechnology Information. https:// www.ncbi.nlm.nih.gov/gene/51428/.
 - Churpek JE, Smith-Simmer K. DDX41-Associated Familial Myelodysplastic Syndrome and Acute Myeloid Leukemia. Gene Reviews. www.ncbi.nlm.nih.gov/books/NBK574843/.
- Choi EJ, Cho YU, Hur EH, et al. Unique ethnic features of DDX41 mutations in patients with idiopathic cytopenia of undetermined significance,

- myelodysplastic syndrome, or acute myeloid leukemia. Haematologica. 2022 Feb 1;107(2):510-518.
- 5. Molteni E, Bono E, Gallì A, et al. Prevalence and myeloid neoplasms in adults with marrow hypocellularity. Blood. 2023 Aug 17; 142 (7): 643-657.
- 6. Duployez N, Largeaud Lneome, Duchmann M. Prognostic impact of DDX41 germline mutations in intensively treated acute myeloid leukemia patients: 17. Cargo C, Bernard E, Beinortas B, et al. Predicting an ALFA-FILO study. Blood 2022; 140 (7): 756-768.
- 7. Tawana K, Drazer MW, Churpek JE. Universal genetic testing for inherited susceptibility in children and adults with myelodysplastic syndrome 18. Goyal T, Tu ZJ, Wang Z, Cook JR. Clinical and and acute myeloid leukemia: are we there yet? Leukemia. 2018 Jul;32(7):1482-1492.
- 8. Döhner H, Wei A, Appelbaum F, et al. Diagnosis and management of AML in adults: 2022 on behalf of the ELN. Blood 2022; 140 (12): 1345– 1377.
- 9. National Comprehensive Cancer Network. Myelodysplastic Syndromes (Version 2.2024). 2024 20. physician gls/pdf/mds.pdf.
- 10. National Comprehensive Cancer Network. Acute Myeloid Leukemia (Version 3.2024). 2024 May 17. https://www.nccn.org/professionals/physician gls/ pdf/aml.pdf.
- 11. Tiffany N. Tanaka, Rafael Bejar; MDS overlap Special thanks to Dr. Victoria Marinas for providing the disorders and diagnostic boundaries. Blood 2019; 133 (10): 1086–1095. doi: 10.1182/blood-2018-10-844670.
- 12. Peter Valent; ICUS, IDUS, CHIP and CCUS: Diagnostic Criteria, Separation from MDS and Clinical Implications. Pathobiology. 2 January 2019; 86 (1): 30–38. doi: 10.1159/000489042
- 13. Kwok B, Hall JM, Witte JS, et al. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood. 2015;126(21):2355-2361. doi: 10.1182/blood-2015-08-667063
- 14. Greenberg PL, Stone RM, Al-Kali A, et al. NCCN Guidelines Insights: Myelodysplastic Syndromes, Version 3.2022. J Natl Compr Canc Netw. 2022;20 (2):106-117. doi: 10.6004/jnccn.2022.0009
- 15. Malcovati L, Cazzola M; The shadowlands of MDS: idiopathic cytopenias of undetermined significance

- (ICUS) and clonal hematopoiesis of indeterminate potential (CHIP). Hematology Am Soc Hematol Educ Program 2015; 2015 (1): 299-307. doi: 10.1182/asheducation-2015.1.299
- clinical expression of germ line predisposition to 16. Arber DA, Orazi A, Hasserjian RP, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200-1228. doi: 10.1182/ blood.2022015850
 - cytopenias, progression, and survival in patients with clonal cytopenia of undetermined significance: a prospective cohort study. The Lancet. 2024 Jan. doi: 10.1016/S2352-3026(23)00340-X
 - Spectrum of DDX41-Mutated Pathologic Hematolymphoid Neoplasms. Am J Clin Pathol. 2021 Oct 13;156(5):829-838. doi: 10.1093/ajcp/ aqab027. PMID: 33929502.
- recommendations from an international expert panel 19. Li, P., White, T., Xie, W. et al. AML with germline DDX41 variants is a clinicopathologically distinct entity with an indolent clinical course and favorable outcome. Leukemia 36, 664-674 (2022). doi: 10.1038/s41375-021-01404-0
 - https://www.nccn.org/professionals/ 20. Bannon SA, Routbort MJ, Montalban-Bravo G, et al. Next-Generation Sequencing of DDX41 in Myeloid Neoplasms Leads to Increased Detection of Germline Alterations. Frontiers in Oncol. 2021 Jan 27. Vol 10.

ACKNOWLEDGMENTS

pathology images included in this case report.

CONFLICTS OF INTEREST

All authors declare no conflicts of interest.