Journal of Medical Sciences at NEOMED

Volume 2, Issue 1, January 2024

TURMERIC - The Golden Herb!

Altaf S. Darvesh, MPharm, PhD^{1,2,*}

- 1. Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272
- 2. Department of Psychiatry, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272
- * Corresponding author

ABSTRACT

The curry spice, turmeric, is used to provide color and flavor to food, as well as for its health benefits. Turmeric contains many polyphenolic compounds known as curcuminoids, with curcumin being the most prominent curcuminoid. In this perspective, the health benefits of turmeric curcuminoids are highlighted. Specifically, this perspective summarizes the source, history, and the general use of turmeric. The pharmacology, especially the antioxidative and anti-inflammatory properties, safety, and the pharmacokinetic profile, as well as the therapeutic potential of curcuminoids in several disease conditions is discussed. The development of semi-synthetic forms and novel formulations for delivery of curcuminoids is mentioned. This article reflects upon the current status of turmeric use and the potential challenges, as well as future steps needed for development of curcuminoids as therapeutic agents in the clinic.

Keywords: curcumin, inflammation, oxidative stress, polyphenols, turmeric

INTRODUCTION

Herbs have been used over many millennia as spices - providing flavor, color, and preservation to food along with health benefits. Of particular interest is turmeric, which in recent years has gained immense popularity for its potential health benefits.2 This perspective provides a succinct overview of turmeric. A general background of the turmeric herb, such as its source, history, geographical distribution, and general use is reviewed. The article discusses the curcuminoids present in turmeric and their pharmacodynamic and pharmacokinetic characteristics, along with their therapeutic potential in several illnesses. bioavailability, safety, semi-synthetic forms, and novel forms incorporating curcuminoids highlighted. Also discussed are the potential challenges and future directions for the effective development of turmeric compounds as mainstream therapeutic agents for clinical use.

CURCUMINOIDS

The curry spice, turmeric, also called "Indian saffron," is obtained from the underground rhizomes of the plant Curcuma longa, which belongs to the ginger family, Zingiberaceae. The rhizomes are boiled, dried, and ground to produce an intense yellow powder. The turmeric plant is native to the tropical parts of South Asia and Southeast Asia and is extensively used in the cuisine of these regions to impart color and flavor.³

Turmeric has been used for thousands of years in many traditional systems of alternative medicine such as Ayurveda, Siddha, and Unani from South Asia, as well as traditional Chinese medicine.⁴ Within those cultures, turmeric can be recommended for several illnesses such as indigestion, infections, arthritis, rheumatism, and respiratory ailments.4-7 Anecdotally, turmeric is credited with cardioprotective, neuroprotective, anticarcinogenic, and lipid-lowering properties. Efforts need to be made to make the general public aware of the potential health benefits and therapeutic applications of turmeric. Turmeric powder contains polyphenolic compounds known as curcuminoids which impart a deep yellow color. Commercially available turmeric powder contains approximately 77% curcumin (curcumin I), the principal curcuminoid, along with 18% desmethoxycurcumin (curcumin II), and 5% bisdemethoxycurcumin (curcumin III)³ (Figure 1). Semi-synthetic curcuminoids such as diacetylcurcumin, hexahydrocurcumin, isoxazole-curcumin, and hydrazinocurcumin, along with metal complexes of curcumin have been synthesized and evaluated for their biological effects. 9-11 The curcumin structure has also been utilized as a scaffold in drug-discovery programs. 12,13 Utilization of curcuminoids, both naturally occurring as well as semi-synthetic forms, in the drug discovery process needs more rigor and effort especially in the publication and dissemination of scientific literature.

Figure 1A. Structure of

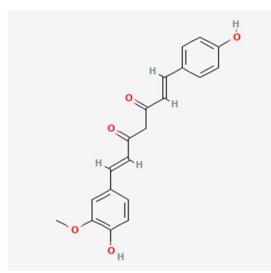


Figure 1B. Structure of demethoxycurcumin 15

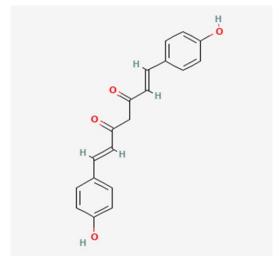


Figure 1C. Structure of bisdemethoxycurcumin 16

PHARMACODYNAMICS AND THERAPEUTICS

In the past three decades, considerable amount of research has been conducted to investigate the biological, pharmacological, and therapeutic effects of curcumin. 17-20 Curcumin's therapeutic potential in autoimmune, cardiovascular, neoplastic, and neurodegenerative diseases is vastly due to its robust antioxidative and anti-inflammatory properties, as well as its ability to modulate a wide array of signaling mechanisms.²¹ Dietary polyphenols, such as anthocyanins from berries, catechins and theaflavins from green and black tea respectively, resveratrol from grapes, wine, and peanuts, as well as curcuminoids from turmeric, have all been shown to possess potent effects. 22,23 antioxidative and anti-inflammatory Polyphenolic phytomolecules possess multiple hydroxyl groups, phenolic groups, and conjugated double bonds which contribute to their free radical quenching properties.²⁴ Polyphenols, such as curcumin, consumed as part of diet or taken as supplements, attenuate the oxidative stress and inflammation produced due to harmful stimuli, ionizing radiation, environmental pollutants, and pathophysiological factors thus providing both prophylactic and therapeutic benefits. Curcumin has been shown to produce robust antioxidative effects and its effects on multiple markers of oxidative stress, including antioxidant enzymes, has been well documented.^{25,26} The anti-inflammatory effects of dietary polyphenols, along with their suppressive effects on inflammatory pathways, has been well characterized.^{23,27} The past two decades have seen significant research in elucidating the anti-inflammatory portfolio of curcumin. Curcumin's inhibitory effects on a range of inflammatory cytokines such as interleukins, chemokines, and cachectin (tumor necrosis factor-α, TNF- α) has been systematically examined by several researchers. ²⁸⁻³² Nuclear factor- $\kappa\beta$ (NF- $\kappa\beta$) is known as the master switch of the inflammatory cascade and is the most prominent transcription factor responsible for activating inflammatory pathways. The Aggarwal laboratory demonstrated for the first time the curcuminmediated suppression of NF-κβ and its related target genes.³¹ Curcumin has been shown to modulate an amazing array of molecular targets such as growth factors, transcription factors, enzymes such as kinases, inflammatory cytokines, adhesion molecules, and apoptotic proteins.³²

MOLECULAR EFFECTS OF CURCUMIN

Curcuminoids have been extensively investigated in both *in vitro* and *in vivo* pre-clinical models, as well as in clinical studies of chronic disorders such as autoimmune (e.g., rheumatoid arthritis, ulcerative colitis), anti-infective, cardio-vascular, neoplastic (e.g., colon cancer, pancreatic cancer, head and neck cancers, melanoma), and neurodegenerative diseases (e.g., Alzheimer's disease,

disease).^{26,33-36} Curcuminoids Parkinson's have demonstrated their suppressive effects on markers of oxidative stress, inflammation, and pathogenesis in the aforementioned studies. Since oxidative stress and inflammation are ubiquitous in the pathophysiology of disease, the antioxidative and anti-inflammatory effects of curcumin, along with its pleiotropic effects on a multitude of biochemical pathways and molecular targets ultimately contribute to its prophylactic and therapeutic potential in the wide range of diseases. Curcumin has been shown to affect inflammatory cytokines, antioxidant enzymes, regulatory proteins, signaling molecules, and cell proliferation in a multitude of pathophysiological states (Figure 2). 37-39

Similar to other dietary polyphenols, curcuminoids in combination have demonstrated considerable synergy, as compared to curcumin alone, antioxidative, anti-inflammatory, therapeutic potential, as well as their bioavailability. 40 The National Toxicology Program (NTP) evaluated the potential toxicity and carcinogenicity of turmeric oleoresin containing about 80% curcumin. The NTP and subsequent studies did not find any evidence for carcinogenic potential. 41-44 Although both rats and mice fed with curcumin for two years at the highest dose (50,000 ppm) showed a higher incidence of ulcers, hyperplasia, and hyperkeratosis of the forestomach, the NTP report suggested that turmeric has minimal potential for toxicity at clinical doses. 41 Curcumin at a low dose of 2000 ppm also did not alter the life span of genetically heterogenous mice.⁴⁵ While there is considerable progress in the pre-clinical dose-ranging and safety studies of turmeric curcuminoids, dosing and safety studies in humans is considerably lacking and needs further investigation. It is important that the efficacy and safety be examined in humans. Thus, clinical investigation of the therapeutic benefits and potential adverse effects of curcumin is much needed.

PHARMACOKINETIC PROFILE AND DOSAGE FORMS OF CURCUMIN

The pharmacokinetic profile of curcumin has been well studied and documented. 46,47 Curcumin is poorly absorbed and undergoes extensive metabolism resulting in low bioavailability. Curcumin is relatively unstable in aqueous media and forms degradation products such as ferulic acid and vanillin, as well as reduction products such as tetrahydrocurcumin and hexahydrocurcumin. Curcumin undergoes extensive conjugation metabolism in the liver to form glucuronide and sulfate conjugates (Figure 3). 47,48 The biological activity of curcumin degradation products and metabolites has been studied by several researchers. Both degradation products such as ferulic acid and vanillin, as well as reduction products such as tetrahydrocurcumin and hexahydrocurcumin, showed pharmacological effects similar to curcumin. The biological activity of curcumin glucuronide and sulfate conjugates, which are highly hydrophilic, is not well studied. 45,47,48

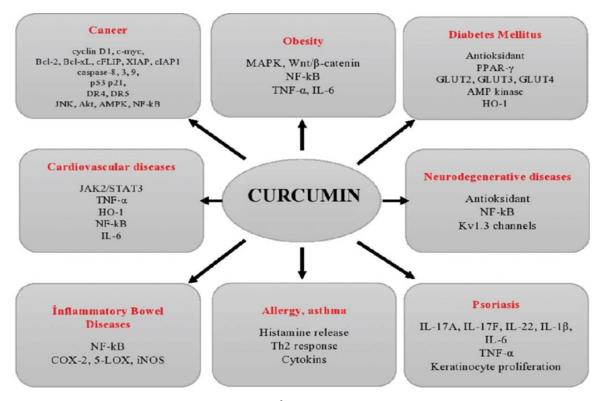


Figure 2. Molecular therapeutic targets of curcumin²

Low bioavailability of naturally occurring polyphenolic compounds, such as curcumin, resveratrol, and tea polyphenols, has been the primary hurdle in the therapeutic development and translational pharmacotherapy of these agents. Act Considerable efforts have been made to enhance the clinical bioavailability of curcumin, such as the use of novel drug delivery systems and other agents such as piperine and lecithin. Act Curcumin's ability to cross the blood brain barrier has also been examined, since it is a critical aspect of its neurotherapeutic potential. Curcumin has been shown to cross the blood brain barrier after oral, intramuscular, and intra-peritoneal administration, and its presence has been detected in the cerebrospinal fluid and nervous tissue.

Curcumin bioavailability has been shown to be considerably enhanced when co-administered with piperine, an alkaloid obtained from black pepper (Piper nigrum) and long pepper (Piper longum).⁵³ Recently, oral curcumin-piperine combination was clinically evaluated as an adjuvant therapy in COVID-19 patients. Patients receiving curcumin-piperine treatment showed early symptomatic recovery and better clinical outcomes as well as reduced duration of hospitalization.⁵⁴ Curcumin as a treatment option against COVID-19 has been a subject of intense investigation since 2020. Investigators utilized in silico, in vitro, and clinical approaches to study the use of curcumin and its derivatives for its anti-viral, immunomodulatory prophylactic, and therapeutic potential against COVID-19. Since curcumin has been shown to have anti-viral properties, there is a strong rationale for its investigation for the treatment of COVID-19. Curcumin showed anti-viral and antiinflammatory effects in in vitro models of COVID-19. Molecular docking and binding potency studies of curcumin derivatives in in silico studies produced encouraging results for the potential use of curcumin derivatives in COVID-19. Curcumin, and its derivatives in various novel dosage forms, have been clinically investigated for their effects on symptoms as well as mortality in COVID-19 patients with encouraging results. Results obtained so far justify the need for further systematic pre-clinical/clinical investigation for the use of curcumin in COVID-19 treatment.⁵⁵

Use of nanoparticle-based technology has been featured prominently amongst novel drug delivery systems utilized to improve curcumin bioavailability. Curcumin-loaded nanoparticles have been examined in pre-clinical models, as well as in clinical studies across a wide range of diseases such as neurological disorders, cancers, and parasitic and viral infections, including COVID-19. Besides nanoparticle formulations, curcumin has also been formulated and evaluated as liposomes, biodegradable microspheres, micellar formulations, cyclodextrin and phospholipid complexes, and nanogels, as well as metal complexes for enhanced bioavailability and sustained delivery. Significant effort has been made in developing drug delivery strategies to develop curcumin as a clinically effective therapeutic agent against a multitude of diseases. 23,64-66

Novel formulations and dosage forms of curcumin need to be evaluated clinically to establish their safety and efficacy.

PERSPECTIVE

The intensely yellow turmeric curcuminoids have been and are still being extensively used in traditional medicine for several ailments. Turmeric remains a popular culinary spice in several cultures and has been shown safe to consume. Pre-clinical studies, both in vitro and in vivo, have established the antioxidant and anti-inflammatory properties of curcumin. There is significant evidence which shows curcumin's property to modulate a wide range of molecular targets and signaling pathways involved in the pathophysiology of a multitude of diseases. 67-70 In recent years, turmeric curcuminoids and their derivatives have been studied extensively for their therapeutic potential in a range of illnesses such as autoimmune, cardiovascular, endocrine, infectious, metabolic, neurodegenerative, and neoplastic diseases. 49,50,71-74 However, similar to other dietary polyphenols, curcumin has not yet been developed as a clinically available mainstream therapeutic agent. The major caveat in the development of polyphenols as mainstream therapeutic agents is its low bioavailability. The bench-to-bedside transition of polyphenols such as curcumin, resveratrol, and tea polyphenols are difficult as these compounds, both pharmacologically active curcuminoids as well as their reduction and degradation products, show low plasma levels. Using piperine adjuvant therapy is a simple means to enhance curcumin bioavailability. There has been considerable progress in formulating curcumin in novel dosage forms which aim to achieve clinically optimum bioavailability. Clinical development of dosing regimens of curcumin is lacking and requires serious investigation. Rigorous clinical research is needed to establish curcumin as a viable and effective therapeutic agent.

A systematic and vigorous effort is required for turmeric curcuminoids to be utilized as mainstream prophylactic and therapeutic agents. It is important to increase the general awareness of turmeric as a spice and flavoring agent along with its potential health benefits. A critical factor in ensuring curcumin's success as a mainstream therapeutic agent is thorough clinical investigation, which includes dose ranging studies, as well as studies to investigate its safety and efficacy in a wide range of diseases. Collaboration between various governmental agencies, academic institutions, research foundations, as well as the pharmaceutical industry will be most beneficial in ensuring the clinical success for turmeric. General awareness on the potential therapeutic benefits of turmeric curcuminoids is much needed. Dissemination of literature regarding the health benefits of turmeric will be beneficial in increasing the popularity and use of this golden herb.

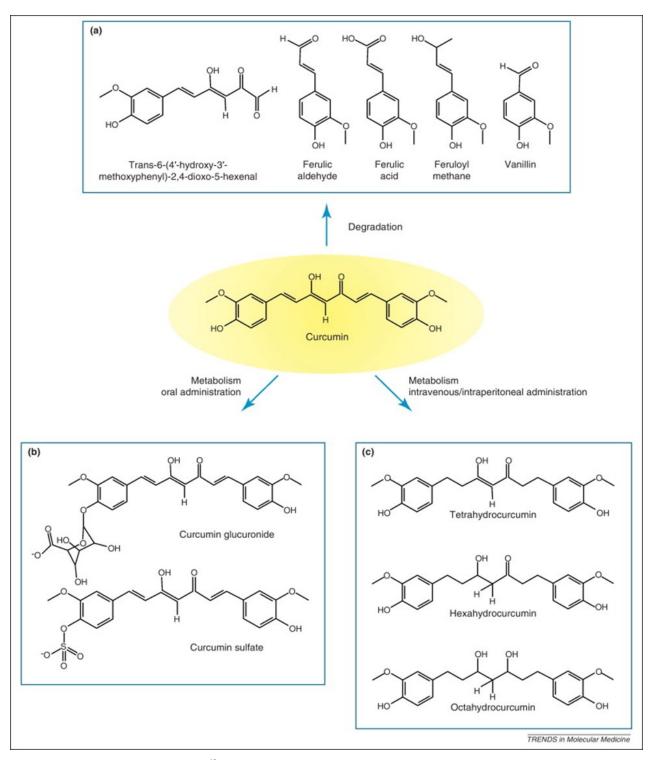


Figure 3. Metabolites of curcumin⁴⁸

REFERENCES

- Jiang TA. Health benefits of culinary herbs and spices. J AOAC Int. 2019;102(2):395-411. doi:10.5740/jaoacint.18-0418
- Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. 2017;57 (13):2889-2895. doi:10.1080/10408398.2015.1077195
- 3. Ravindran PN. Turmeric: The genus Curcuma. 1st ed. London (UK): Routledge Taylor & Francis Group; 2007. Chapter 1, Turmeric The golden spice of life; 1-14.
- 4. Akaberi M, Sahebkar A, Emami SA. Turmeric and Curcumin: From Traditional to Modern Medicine. *Adv Exp Med Biol.* 2021;1291:15-39. doi:10.1007/978-3-030-56153-6 2
- Ahsan R, Arshad M, Khushtar M, et al. A Comprehensive Review on Physiological Effects of Curcumin. Drug Res (Stuttg). 2020;70(10):441-447. doi:10.1055/a-1207-9469
- Kwiecien S, Magierowski M, Majka J, et al. Curcumin: A Potent Protectant against Esophageal and Gastric Disorders. *Int J Mol Sci.* 2019;20 (6):1477. doi:10.3390/ijms20061477
- Mehta HJ, Patel V, Sadikot RT. Curcumin and lung cancer-a review. *Target Oncol.* 2014; 9(4):295-310. doi:10.1007/s11523-014-0321-1
- Aggarwal BB, Bhatt ID, Ichikawa H, Ahn KS, Sethi G. Turmeric: The genus Curcuma. 1st ed. London (UK): Routledge Taylor & Francis group; 2007. Chapter 10, Curcumin – biological and medicinal properties; 297-368.
- 9. Prasad S, Aggarwal BB. Herbal medicine; Biomolecular and clinical aspects. 2nd ed. London (UK): CRC Press/Taylor & Francis group; 2011. Chapter 13, Turmeric, the golden spice from traditional medicine to modern medicine; 263-288
- 10. Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. *Curr Pharm Des.* 2013;19(11): 2047-2069.

- Wanninger S, Lorenz V, Subhan A, Edelmann FT. Metal complexes of curcumin – synthetic strategies, structures, and medicinal applications. Chem Soc Rev. 2015;44(15): 4896-5002. doi:10.1039/c5cs00088b
- 12. Lo Cascio F, Marzullo P, Kayed R, Piccionello AP. Curcumin as Scaffold for Drug Discovery against Neurodegenerative Diseases. *Biomedicines*. 2021;9 (2):173. doi:10.3390/biomedicines9020173
- 13. Olotu F, Agoni C, Soremekun O, Soliman MES. An Update on the Pharmacological Usage of Curcumin: Has it Failed in the Drug Discovery Pipeline? *Cell Biochem Biophys.* 2020;78(3): 267-289. doi:10.1007/s12013-020-00922-5
- Curcumin. U.S. National Library of Medicine. National Center for Biotechnology Information. PubChem Compound Database. Retrieved November 12, 2023.
- 15. Demethoxycurcumin. U.S. National Library of Medicine. National Center for Biotechnology Information. PubChem Compound Database. Retrieved November 12, 2023.
- Bisdemethoxycurcumin. U.S. National Library of Medicine. National Center for Biotechnology Information. PubChem Compound Database. Retrieved November 12, 2023.
- 17. PDQ Integrative, Alternative, and Complementary Therapies Editorial Board. Curcumin (Curcuma, Turmeric) and Cancer (PDQ®): Health Professional Version. In: PDQ Cancer Information Summaries. Bethesda (MD): National Cancer Institute (US); 2022.
- Tsai IC, Hsu CW, Chang CH, Tseng PT, Chang KV. The Effect of Curcumin Differs on Individual Cognitive Domains across Different Patient Populations: A Systematic Review and Meta-Analysis. *Pharmaceuticals (Basel)*. 2021;14 (12):1235. doi:10.3390/ph14121235
- Pang BY, Wang YH, Ji XW, Leng Y, Deng HB, Jiang LH. Systematic review and meta-analysis of the intervention effect of curcumin on rodent models of myocardial infarction. *Front Pharmacol*. 2022;13:999386. doi:10.3389/fphar.2022.999386
- 20. Islam F, Islam MM, Khan Meem AF, et al. Multifaceted role of polyphenols in the treatment

- and management of neurodegenerative diseases. *Chemosphere.* 2022;307(Pt3):136020. doi:10.1016/j.chemosphere.2022.136020
- Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune, and neoplastic diseases. *Int J Biochem Cell*. 2009;41(1):40-59. doi:10.1016/j.biocel.2008.06.010
- 22. Darvesh AS, Carroll RT, Bishayee A, Geldenhuys WJ, Van der Schyf, CJ. Oxidative stress and Alzheimer's disease: dietary polyphenols as potential therapeutic agents. *Expert Rev Neurother*. 2010;10(5):729-745. doi:10.1586/ern.10.42
- Hussain T, Tan B, Yin Y, Blachier F, Tossou MYB, Rahu N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us?. Oxid Med Cell Longev. 2016; 2016:7432797. doi:10.1155/2016/7432797
- 24. Tsao R. Chemistry and biology of dietary polyphenols. *Nutrients*. 2010;2(12):1231-1246. doi: 10.3390/nu2121231
- Sahebkar A, Serban MC, Ursoniu S, Banach M. Effect of curcuminoids on oxidative stress: A systematic review and meta-analysis of randomized controlled trials. *J Funct Foods*. 2015;18(Part B):898-909. doi.org/10.1016/j.jff.2015.01.005
- 26. Darvesh AS, Carroll RT, Bishayee A, et al. Curcumin and neurodegenerative diseases: a perspective. *Expert Opin Investig Drugs*. 2012;21 (8):1123-1140.doi:10.1517/13543784.2012.693479
- Yahfoufi N, Alsadi N, Jambi M, Matar C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. *Nutrients*. 2018;10(11):1618. doi:10. 3390/nu10111618
- 28. Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. *Altern Med Rev.* 2009;14(2):141-215.
- 29. Menon VP, Sudheer AR. Antioxidant and antiinflammatory properties of curcumin. *Adv Exp Adv Biol.* 2007;595:105-125. doi:10.1007/978-0-387-46401-5 3

- Gorabi AM, Razi B, Aslani S, et al. Effect of curcumin on proinflammatory cytokines: A metaanalysis of randomized controlled trials. *Cytokine*. 2021;143:155541. doi:10.1016/j.cyto.2021.155541
- Singh S, Aggarwal BB. Activation of transcription factor NF-kappaB is suppressed by curcumin (diferuloylmethane). *J Biol Chem*. 1995;270 (42):24995-25000. doi:10.1074/jbc.270.42.24995
- 32. Zhou H, Beevers CS, Huang H. Targets of curcumin. *Curr Drug Targets*. 2011;12(3):332-347. doi:10.2174/138945011794815356
- 33. Ebrahimzadeh A, Abbasi F, Ebrahimzadeh A, Jibril AT, Milajerdi A. Effects of curcumin supplementation on inflammatory biomarkers in patients with rheumatoid arthritis and ulcerative colitis: A systematic review and meta-analysis. *Complement Ther Med.* 2021;61:102773. doi:10.1016/j.ctim.2021.102773
- 34. Moghadamtousi SZ, Kadir HA, Hassandarvish P, et al. A review of antibacterial, antiviral, and antifungal activity of curcumin. *Biomed Res Int.* 2014;2014:186864. doi:10.1155/2014/186864
- Cox FF, Misiou A, Vierkant A, et al. Protective Effects of Curcumin in Cardiovascular Diseases-Impact on Oxidative Stress and Mitochondria. Cells. 2022;11(3):342. doi:10.3390/cells11030342
- Tomeh MA, Hadrianamrai R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci. 2019;20(5):1033. doi:10.3390/ijms20051033
- 37. Razavi BM, Rahbardar MG, Hosseinzadeh H. A review of therapeutic potentials of turmeric (Curcuma longa) and its active constituent, curcumin, on inflammatory disorders, pain, and their related patents. *Phytother Res.* 2021;35(12):6489-6513. doi:10.1002/ptr.7224
- 38. Hay E, Lucariello A, Contieri M, et al. Therapeutic effects of turmeric in several diseases: An overview. *Chem Biol Interact.* 2019;310:108729. doi:10.1016/j.cbi.2019.108729
- 39. Lin JK. Molecular targets of curcumin. *Adv Exp Med Biol.* 2007;595:227-243. doi:10.1007/978-0-387-46401 -5_10

- 40. Sandur SK, Pandey MK, Sung B, et al. Curcumin, desmethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. *Carcinogenesis.* 2007; 28(8):1765-1773. doi:10. 1093/carcin/bgm123
- 41. National Toxicology Program. NTP Toxicology and carcinogenesis studies of turmeric oleoresin (CAS No. 8024-37-1) (Major component 79%-85% curcumin, CAS No. 458-37-1) in F344/N Rats and B6C3F1 Mice (Feed studies). *Natl Toxicol Program Tech Rep Ser.* 1993;427:1-275.
- Ahmed RS, Hussain MB, Sultan MT, et al. Biochemistry, Safety, Pharmacological Activities, and Clinical Applications of Turmeric: A Mechanistic Review. Evid Based Complement Alternat Med. 2020;2020:7656919. doi:10.1155/2020/7656919
- 43. Soleimani V, Sahebkar A, Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: Review. *Phytother Res.* 2018;32 (6):985-995. doi:10.1002/ptr.6054
- 44. Hewlings SJ, Kalman DS. Curcumin: A Review of Its' Effects on Human Health. *Foods.* 2017;6 (10):92. doi:10.3390/foods6100092
- 45. Strong R, Miller RA, Astle CM, et al. Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. *J Gerontol A Biol Sci Med Sci.* 2013;68(1):6-16. doi:10.1093/gerona/gls070
- 46. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. *Mol Pharm.* 2007;4(6):807 -818. doi:10.1021/mp700113r
- 47. Cas MD, Ghidoni R. Dietary curcumin: Correlation between bioavailability and health potential. *Nutrients*. 2019;11(9):2147. doi:10.3390/nu11092147
- 48. Shen L, Ji HF. The pharmacology of curcumin: is it the degradation products? *Trends Mol Med*. 2012;18(3):138-144. doi:10.1016/j.molmed.2012.01.004
- Mythri RB, Bharath MS. Curcumin: a potential neuroprotective agent in Parkinson's disease. Curr Pharm

- Des. 2012;18(1):91-99. doi:10.2174/138161212798918995
- 50. Mishra S, Palanivelu K. The effect of curcumin (turmeric) on Alzheimer's disease: An overview. *Ann Indian Acad Neurol.* 2008;11(1):13-19. doi:10.4103/0972-2327.40220
- 51. Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ. Curcumin labels amyloid pathology in vivo, disrupts existing plaques and partially restores distorted neurites in an Alzheimer mouse model. *J Neurochem*. 2007;102(4):1095-1104. doi:10.1111/j.1471-4159.2007.04613.x
- 52. Begum AN, Jones MR, Lim GP, et al. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer's disease. *J Pharmacol Exp Ther.* 2008;326(1):196-208. doi:10.1124/jpet.108.137455
- 53. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. *Planta Med.* 1998;64(4):353-356. doi:10.1055/s-2006-957450
- 54. Pawar KS, Mastud RN, Pawar SK, et al. Oral Curcumin with Piperine as Adjuvant Therapy for the Treatment of COVID-19: A Randomized Clinical Trial. *Front Pharmacol.* 2021;12:669362. doi:10.3389/fphar.2021.669362
- 55. Gupta H, Gupta M, Bhargava S. Potential use of turmeric in COVID-19. *Clin Exp Dermatol*. 2020;45(7):902-903. doi:10.1111/ced.14357
- Babaei F, Nassiri-Asl M, HosseinZadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci. Nutr. 2020;8(10):5215-5227. doi:10.1002/fsn3.1858
- 57. Alici H, Tahtaci H, Demir K. Design and various in silico studies of the novel curcumin derivatives as potential candidates against COVID-19 associated main enzymes. *Comput Biol Chem.* 2022;98:107657. doi:10.1016/j.compbiolchem.2022.107657
- Marin-Palma D, Tabares-Guevara JH, Zapata-Cardona MI, et al. Curcumin Inhibits In Vitro SARS-CoV-2 Infection In Vero E6 Cells through Multiple Antiviral Mechanisms. *Molecules*. 2021;26 (22):6900. doi:10.3390/molecules26226900

- Soni VK, Mehta A, Rathre VK, et al. Curcumin, a traditional spice component, can hold the promise against COVID-19?. Eur J Pharmacol. 2020;886:173551. doi:10.1016/j.ejphar.2020.173551
- Yavarpour-Bali H, Ghasemi-Kasman M, Pirzadeh M. Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. *Int J Nanomedicine*. 2019;14: 4449-4460. doi:10.2147/IJN.S208332
- 61. Rai M, Ingle AP, Pandit R, et al. Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities. *Expert Rev Anti Infect Ther*: 2020;18 (4):367-379. doi:10.1080/14787210.2020.1730815
- 62. Ipar VS, Dsouza A, Devarajan PV. Enhancing curcumin oral bioavailability through nanoformulations. *Eur J Drug Metab Pharmacokinet.* 2019;44(4):459-480. doi:10.1007/s13318-019-00545-z
- 63. Dourado D, Freire DT, Pereira DT. Will curcumin nanosystems be the next promising antiviral alternatives in COVID-19 treatment trials?. *Biomed Pharmacother*. 2021;139:111578. doi:10.1016/j.bio.pha.2021.111578
- 64. Kumar A, Ahuja A, Ali J, Baboota S. Conundrum and therapeutic potential of curcumin in drug delivery. *Crit Rev Ther Drug Carrier Syst.* 2010;27(4):279-312. doi:10.1615/critrevtherdrugcarriersyst.v27.i4.10
- 65. Feng T, Wei Y, Lee RJ, Zhao L. Liposomal curcumin and its application in cancer. *Int J Nanomedicine*. 2017;12:6027-6044. doi:10.2147/ IJN.S132434
- Liu W, Zhai Y, Heng X, et al. Oral bioavailability of curcumin: problems and advancements. *J Drug Target*. 2016;24(8):694-702. doi:10.3109/1061186X.2016.1157883
- 67. Jayaprakasha GK, Rao IJ, Sakariah KK. Antioxidant activities of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. *Food Chem.* 2006;98(4):720-724. doi:10.1016/j.foodchem.2005.06.037
- 68. Satyabhama M, Priyadharshini LD, Karthikeyan A, et al. The credible role of curcumin in oxidative stress-mediated mitochondrial dysfunction in mammals. *Biomolecules*. 2022;12(10):1405. doi:10.3390/biom12101405

- 69. Basner P, Skalko-Basner N. Curcumin: an antiinflammatory molecule from a curry spice on the path to cancer treatment. *Molecules*. 2011;16 (6):4567-4598. doi:10.3390/molecules16064567
- Koroljevic ZD, Jordan K, Ivkovic J, et al. Curcuma as an anti-inflammatory component in treating osteoarthritis. [published online ahead of print, 2022 Nov 17]. Rheumatol Int. 2022;10.1007/ s00296-022-05244-8. doi:10.1007/s00296-022-05244-8
- Giordano A, Tommonaro G. Curcumin and Cancer. Nutrients. 2019;11(10):2376. doi:10.3390/nu11102 376
- Marton LT, Pescinini-E-Salzedas LM, Camargo MEC, et al. The Effects of Curcumin on Diabetes Mellitus: A Systematic Review. Front Endocrinol (Lausanne). 2021;12:669448. doi:10.3389/fendo. 2021.669448
- 73. Pourhabibi-Zarandi F, Shojaei-Zarghani S, Rafraf M. Curcumin and rheumatoid arthritis: A systematic review of literature. *Int J Clin Pract*. 2021;75(10):e14280. doi:10.1111/ijcp.14280
- Li H, Sureda A, Devkota HP, et al. Curcumin, the golden spice in treating cardiovascular diseases. *Biotechnol Adv.* 2020;38:107343. doi:10.1016/ j.biotechadv.2019.01.010

ACKNOWLEDGMENTS

The author gratefully acknowledges the valuable insight and opinions provided by Dr. Moses Oyewumi and Dr. Chris Paxos.

The author expresses his sincere thanks to Dr. Shelley Harrell Ivary for her help with obtaining copyrights for the figures.

CONFLICTS OF INTEREST

All authors declare no conflicts of interest.