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ABSTRACT

Cancer has consistently been a public health burden for many decades, responsible for high mortality and
morbidity rates worldwide. Effective cancer diagnostic methods are crucial to improving patients' survival
and timely implementation of therapeutic and surgical interventions. Current diagnostic technologies are
much more efficient in detecting cancer at late stages (stages 3 and 4) than early stages (stages 1 and 2),
typically in solid tumor-based cancers. Meanwhile, cancer metastasis is a prominent feature of late stages,
which poses a significant barrier to the effectiveness of therapeutic and surgical interventions. Thus,
detecting early-stage cancer is crucial when the disease remains within the primary site. Though liquid
biopsy has gained attention for noninvasive and low-cost diagnosis, cancer biomarkers present at early
stages are at concentrations too low for conventional methods to detect with specificity. The low
concentrations of early-stage cancer biomarkers pose a significant barrier in diagnosing patients with high
sensitivity and specificity. This drawback can be addressed through an innovative combination of
diagnostic nanoparticle platforms with liquid biopsy procedures. The strategy has been demonstrated to
remarkably improve the efficiency of detecting early-stage biomarkers at the lowest concentration
possible, i.e., decreasing the limit of detection (LOD). This review will assess the utility of various
nanoparticle platforms in developing novel diagnostic techniques for early-stage cancer detection.
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INTRODUCTION be used as a guided missile against the diseased cell,
e.g. cancer cells.® There are many FDA-approved drug-
loaded NPs for various disorders. Aside from drug
delivery and nano-theranostic platform, NPs can also be
used for diagnostic purposes using liquid biopsy
samples, which is the focus of this review. Liquid
biopsy samples may include blood, saliva, sputum,
cerebral spinal fluid (CSF), urine, and breast milk.
Using these properties to our advantage,
desired NPs have been previously used to enhance the

therapeutic potential of their contents, i.e., drugs with

Nanotechnology  or  nanoparticle  (NP)
technology revolves around multidisciplinary sciences
like chemistry, biochemistry, physics, biology, and
material sciences. These particles can be described as
minute entities of varying shapes and sizes (<l nm to
1000 nm) fabricated from different materials such as
lipids, ?olymers, semiconductors, non-metal, and
metals.'” NPs can be synthesized into different
architectures, such as hollow particles, multilayer,

porous particles, and many more, based on the
requirement. In addition, the chemical and biological
properties of the NPs can be modified to suit delivery of
various therapeutics such as drugs, peptides, genes,’”
diagnostics,® or imaging agents.” It can be that NPs
improve a drug’s pharmacokinetic profile and decrease
any adverse reactions compared to the administration of
drugs alone. In addition, they can reduce additional
healthcare requirements and costs for any disorder.
Modifying the surface with complementary targets can

poor pharmacokinetic parameters, such as increasing
solubility, enhancing bioavailability, modifying release
characteristics, and extending their life cycle. The
biomedical application of NPs can range from targeted
therapies, theranostics, i.e., pairing diagnostic
biomarkers with therapeutic agents,’ to contrast agents
for imaging.'"’ Based on the modification of NPs for
diagnostics, various detection methods can be applied,
such as optical, magnetic, mechanical, physical, and
biochemical properties that arise from the following
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factors: the manner of synthesis, size, shape, and
surface properties.'!

Current methods to screen cancers include the
Papanicolaou test (cervical cancer),'”> mammography
(breast cancer),” endoscopy for polyp and occult blood
detection for colon cancer,” computed tomography
(CT), low dose CT (LDCT), X-ray, ultrasound imaging,
magnetic resonance imagining (MRI), and tissue
biopsy.">"® These approaches are either invasive, cause
patient discomfort, risk radiation exposure, result in a
financial burden, and/or do not meet the -criteria
required for the early-stage detection.'” Recently, with
the help of liquid biopsy, specific molecules, or
biomarkers, have been utilized to detect cancer in the
early stage faster and more accurately. Liquid biopsy is
a diagnostic procedure that involves the analysis of the
patient’s fluid sample such as blood (serum or plasma),
sputum, urine, breast milk, and cerebrospinal fluid
(CSF) for biological markers pertaining to a specific
disorder, i.e., cancer.”>?* Our blood is comprised of
abundant biomolecules, which can provide a plethora of
information regarding the body’s physiological and
pathophysiological functioning. Examples of biological
materials or biomarkers involve circulating tumor cells
(CTCs), platelets, extracellular vesicles (EV), mRNA,
miRNA, protein and/or post-translational modified
proteins, and cell-free DNA (cfDNA), and in case of
cancer, circulating tumor DNA (ctDNA) and many
more.

Biomarker Type of Cancer| Reference
miR-21, 25, 155 Lung cancer 9697
CEA Lung, ovarian, 82,98,99
colon
CA 19-9 Colon %
PSA Prostate 100
CA- 125 Lung, ovarian 98.101
miR-27b Cervical 102
Mugcin 1 Pancreatic, 93,99
colon
Exosomes Lung, ovarian, 103-106
melanoma,
glioblastoma
Long-non-coding Lung 107
RNA GASS
miR-223 Lung 108
CYFRA 21-1 Lung 109

Table 1. A representative list of biomarkers reported
for early-stage cancer diagnosis.
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Biomarkers can objectively measure and
evaluate normal and abnormal biological processes.
Cancer research has been using this method to obtain
information regarding the tumorigenic process
occurring in the body and to provide the best possible
treatment for the patient. Their presence in biological
fluids can prove advantageous for detection purposes
and cost-effectiveness (Table 1).2%2° However, these
biomarkers can sometimes be present at low
concentrations for detection, especially in the early
stages of any cancer. Using NP platforms, the
diagnostic efficiency of the biomarkers can be markedly
enhanced such that trace quantities can be detected and
quantified (lowering the limit of detection: LOD). Aside
from specific protein and nucleic acids-based
biomarkers, EV, specifically exosomes, have been
previously reported to differentiate between normal and
cancer cells based on its cargo. Exosomes are one of the
many classifications of EV and are a minute (30-200
nm) lipid vesicle enveloping a variety of cargo such as
proteins, nucleic acid, enzymes, peptides, and more.
They play a crucial role in cell-to-cell communication in
both standard and abnormal conditions.***” This review
will focus on how NP technology has been applied in
detecting cancer in the early stages (1 or 2) using
biomarkers and EVs. In addition, the application of this
platform can be used to lower the LOD for selected
biomarkers, thereby enabling detection at lowest
concentration, leading to an improvement in diagnostic
efficiency.

When using NPs for drug delivery purposes, it
is of utmost importance that these particles and their
respective  modifications are non-reactive and
biocompatible. However, in the case of diagnosing
using a patient sample, such a parameter is not
considered necessary since such systems are not being
injected into the body. Using this platform, NPs can be
tagged or conjugated with the protein or nucleic acid
that complements the target protein or nucleic acid in
the patient sample. Upon interaction, the NP complexes
can emit luminescence, supermagnetism, or
fluorescence/exhibit colorimetric changes (Figure 1).
These minute particles can offer sensitivity, decrease
the LOD, are user-friendly, time-saving, and cost-
effective solutions for molecular diagnostics.”* They
can be used to detect various disorders, especially early-
stage cancer.

Cancer is a heterogeneous complex disease
involving abnormal cell growth and proliferation. Its
etiology has been associated with external factors
(lifestyle, air pollution, exposure to chemicals) and/or
genetic (upregulation of oncogenes or downregulation
of tumor suppressors).**** Cancer is one of the many
significant health problems worldwide, being the
second leading cause of death in the United States.
Reports have estimated about 2 million new cases, of
which 600,000 have led to morbidity in 2022.* To
tackle high incidences and death rates, early-stage
cancer detection is very important,* since it can lead to
improved outcomes and lower medical costs while
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Figure 1. A-B) An illustration of different nanoparticle
platforms that are applied in early-stage cancer
detection. C-D) Samples for liquid biopsy (blood) can
be derived from patients with different stages of cancer.
Various nanoparticles such as gold, magnetic
nanoparticles, and quantum dots can be applied for
diagnostic purposes.

decreasing the need for complicated surgical and
therapeutic interventions. Based on their origin, cancers
can be segregated into liquid types (lymphoma,
leukemia, etc.) and solid (lung, brain, breast, etc.). This
review will focus on the early-stage detection of solid
type cancers with the help of biomarkers present in
bodily fluids. During the early stages of solid type
cancers (1 & 2), uncontrolled prohferatlon occurs
within the tissue border of the primary organ site.’**
During the metastatic phase, the cancerous cells
disseminate and travel to other sites, such as nearby
lymph nodes or organs like bone, brain, lung, and liver
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via lymphatic or blood circulation (stage 3 or 4).*® The
overall survival for patients decreases drastically with
disease progression due to the following: inability to
cope with the treatment regimen or surgery, drug
resistance, relapse, tumor cells spreading and occupying
major organs, inability to locate dormant tumors, or
untreatable tumors due to their anatomic locations.
Hence, the survival of cancer patients depends heavily
on early detection before metastasis occurs. Thus, the
requirement for a more sensitive, specific, and accurate
early—stage detection system is in dire need.">*****’ This
review will discuss the applications of gold, magnetic
nanoparticles, and quantum dots in -early-stage
detection.

GOLD NANOPARTICLES

Gold has been of great use and value over the
centuries, both ornamentally and medicinally. For many
decades, gold nanoparticles (GNPs) have been widely
used for dlagnostlcs therapeutics, or theranostic
purposes.’® GNPs have been reported to be inert and can
be synthesized in desired size and shape. Gold’s surface
chemistry can be modified to add or conjugate various
molecules such as ligands, antibodies, peptide aptamers,
and cell-derived materials. This surface
functionalization on GNPs allows increased cellular
binding affinity through active targeting, which aids in
either detectlng the desired biomarker or in targeted
therapy.>*>' Due to their variable size and shape,
GNPs have been reported to have increased the
permeability  retention (EPR) effect, allowing
accumulation in the target tissue or organ. In addition,
GNPs are biocompatible and do not cause any
significant cytotoxic effect. In the past few decades,
GNPs have also emerged as a promising method for

Nanoparticle Type Type of Cancer Biomarker of Interest/Specific Reference
technique
Gold nanoparticle Oral Microneedles & ultrasound to increase 1o
GNP detection
Gold nanoparticle Ovarian CA-125 t
Gold nanocluster Oral Mildly acidic tumor microenvironment 1
would disassemble acid degradable gold
nanocluster, which increases detection
ability
Reduced graphene oxide, Cervical Biosensor tagged with DNA strand "
multiwalled carbon nanotubes & complementary to DNA extracted from
gold nanoparticles HPC-18 patients
Magnetic nanoparticle Ovarian cancer CA-125, beta-2 microglobulin, e
apolipoprotein Al
Quantum Dots Breast (HER2+) Exosomes 1
Magnetic Nanoparticle Colorectal Cancer Methylation levels of CRC biomarker 1e
mSEPT9

Table 2. A representative list of nanoparticle platforms for early-stage cancer diagnosis.
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optimizing the early detection of cancer.’®*'*

When used with different sensor platforms,
GNPs widened the detection range and lowered the
detection limit for cancerous biomarkers.”>*® In doing
so, these GNP sensors can achieve higher levels of
sensitivity and specificity in detecting cancerous
biomarkers compared to conventional methods.”> " For
instance, a sensor was fabricated using the sandwich
immunoassay principle to detect cancer biomarkers:
prostate-specific antigen (PSA), a common biomarker
for detecting prostate cancer. A combination of GNPs
(~50 nm) functionalized with capture antibody (GNP-
Ab2) and photon-up conversion  fluorescent
nanoparticle-based optical sensor with detection
antibody (UCNPs-Abl) was used.”® The GNP-Ab2 and
UCNP-ADI sandwiched the target antigen present in the
human serum sample by forming an immune complex,
resulting in fluorescence emission. The design is based
on the luminescence resonance energy transfer (LRET)
between UCNPs- Abl & GNP- Ab2 (Figure 2). The
LOD is 1.0 pM compared to the conventional PSA
assay which is 2.3 pM, exhibits high specificity and
sensitivity of immunoreaction where no interference
from larger macromolecules such as IgG has been
observed. The PSA sensor has a detection limit of 2.3
pM, after which fluorescent quenching is observed with
an increase in target antigen concentration. In contrast,
traditional methods have been reported to detect within
the range of 0.003 to 0.2 ng/mL.°" To assess the
specificity of the nanoprobe, it was mixed with a pool
of macromolecules and ions commonly present in the
blood stream that can cause possible interference
alongside with PSA antigen, such as human IgG, human
serum albumin (HAS), Na+, and K+. The results
showed interference from individual molecules and/or
ions alone, indicating selectivity towards the target
antigen. Furthermore, this sensor proved to be accurate
due to its ability to recover more than 96% when spiked
with serum sample containing different concentrations
of PSA.® The specific, sensitive, and accurate
immunoreaction between UCNPs-Abl and GNPs-Ab2
to its target antigen concluded to be effective system in
detecting its respective cancer biomarker for clinical
application.

Similarly, GNPs combined with multiwalled
carbon nanotubes-graphene and quantum dots, were
fixed on a glass carbon electrode and modified by
conjugating with PSA antibodies. The analytical
performance of this immunosensor exhibited a linear
relationship between the change in PSA concentrations
(1-10000 pg/mL) and impedance change, where upon
binding of the antigen to the electrode surface, there is a
decrease in the electron transfer (E-) between the redox
probe and the electrochemical double layer leading to
an increase in the electron transfer resistance for the
probe to access the double layer (Figure 3). It also
reduced the LOD to 0.48 pg/mL and, upon exposure to
a pool of various macromolecules found in the blood
(CEA, alpha fetal protein (AFP), glucose, PSA, and
IgG) revealed an increase in the impedance upon
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binding to PSA. An essential feature of this label-free
immunosensor includes long-term stability.® In both
cases, GNPs were particularly used not only for their
surface-modifiable ~ property  for  immobilizing
biomolecules but for their ability to accelerate direct
electron transfer between redox probes and electrode
surface. Due to which, the sensors were able to detect
low levels of PSA and may provide a potential for an
early diagnosis of prostate cancer with the help of these
highly sensitive and specific sensors.

In another instance, a GNP-based nano-
geosensor (GNP-NG) was fabricated by reacting aurous
chloride and cystamine HCI solution, followed by the
addition of sodium borohydride, resulting in a
cysteamine-capped gold nanoparticle, which was then
fixed and activated on a glassy carbon working
electrode with a well-aligned DNA monolayer (ss-
probe) (Figure 3).* Previous reports indicated that miR-
25 enhanced cell migration and invasion in non-small
cell lung cancer and its concentration increases as
cancer progresses into advanced stages. In addition,
miR-25 has also been correlated with poor patient
outcomes.”** The GNP-NG was reported to distinguish
between a miR-25 with or without a single base
mutation based on the principle of hybridization
between the ss-probe and the target miR wusing
electrochemical impedance spectroscopy (EIS). This
nano-geosensor upon hybridizing with its target miR,
had a decrease in the electron transfer leading to an
increase in the charge transfer resistance (Rct). It
resulted that the total Rct was directly proportional to
the log of miRNA concentration and in addition could
target miR-25 with a LOD of 0.25 pM directly from the
blood plasma sample without requiring sample
extraction or amplification (PCR) in plasma derived
from early-stage lung cancer patients. The sensor was
also investigated by exposing it to a mixture of
molecules that are both complementary, non-
complementary, and a one-based mismatched target for
its selectivity. The electrochemical signal readings
indicated that hybridization of the ss-probe occurred
only with the complementary targzet, indicating that the
sensor is sensitive and selective.” Traditional methods
to detect miR-25 involve miR isolation followed by
qPCR for quantitative assessment; such techniques can
lead to sample loss, tedious procedures, and are not cost
-effective.

In another study, GNPs were synthesized in the
shape of a superlattice, which was used to improve
conductivity and accelerate electronic transmission and
combined with a cationic dye: toluidine blue (TB) and
capture miR-21 complementary sequence. The dye was
employed to enable the binding of miRNA, because of
which combination has been used as a signal amplifier
to detect miR-21 concentrations ranging from 100 aM
to 1 nM and resulted in a detection limit of 78 aM. The
signal can read as a decrease in the current due to the
steric hindrance of the electron transfer after the target
miR hybridized with the capture sequence. When
pooled with other macromolecules found in the serum,
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Figure 2. The application of GNPs in detecting
cancer-specific biomarkers for early-stage detection
using fluorescence and DPV. A) Upconversion
nanoparticle tagged with capture anti-PSA and GNP
detection anti-PSA. Quenched fluorometric detection of
PSA antigen in the serum sample is measured®® B)
GNPs and carbon nanospheres fixed on a glass
electrode with anti-CEA tag for detecting CEA protein
present on A549 cell surface, measured in terms of
changes in DPV®

the sensor did not respond to interfering species (CEA,
AFP, and CA15-3) (Figure 3). This label-free
electrochemical sensor shows promise due to its high
sensitivity and selectivity for early-stage detection of
cancerous microRNAs in breast cancer patients.*
Previous reports have stated that miR-21 relative
expression increases as the disease progresses compared
to miR-21 levels in non-carcinogenic cells.

Aside from miR, conventional protein markers
such as carcinoembryonic antigen (CEA) and carcinoma
antigen 125 (CA-125) have been used for clinical
diagnosis against different cancers such as lung,
ovarian, breast, etc.”**® Against non-small cell lung
cancer (NSCLC), an electrochemical cyto-sensor was
synthesized, comprising a self-assembled monodisperse
colloidal carbon nanosphere (CNSs) coated with GNPs
and placed on a chitosan film-coated glass carbon
electrode. This cyto-sensor was immobilized with an
antibody to detect NSCLC biomarker; CEA present
within the NSCLC cell line, i.e., A549. The dynamic
incubation of cyto-sensor with A549 cell lines observed
a decrease in the differential pulse voltammetry (DPV),
indicating a shielding effect of the A549 cell line. In
addition, an inversely proportional relationship was
resulting between the DPV and A549 cell density. Aside
from AS549 cell lines, other carcinogenic cells were
assessed against this cytosensor as well, such as MRC-5
cells (human fetal lung) and Hela cells (human cervical
cancer). There was no change in the DPV signaling
when incubated with MRC-5 and Hela cells when
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compared to A549 cells, indicating that the cytosensor
is specific. This study reported a LOD of 14 cells/mL.%’
In addition, conventional immunoassay methods can
measure the concentration of CEA circulating in bodily
fluids such as serum or plasma at a concentration range
of 2-15 ng/mL®® (Figure 2).

After careful consideration of the examples
provided, it can be concluded that GNPs show excellent
promise as an electrochemical sensor for the early
detection of cancers, since GNPs aid in electron
transfer, conductivity, and stability of biomolecules
conjugation.” Many researchers have employed
aptamers and other ligands to facilitate the detection of
cancerous makers aiding in the early-stage
detection.*”**7* These sensors have been modified to
enhance the sensitivity and specificity of cancerous
biomarker detection by widening the detection range
and lowering the lower detection limit.

QUANTUM DOTS

Quantum dots (QDs) or artificial atoms are
semiconductor nanocrystals with optical and electronic
properties. These minute structures consist of tunable
and efficient photoluminescence with narrow emission,
photochemical stability, and core-shell structures. QDs
are commonly used in many devices and appliances like
computers, phones, etc.”’ These nanostructures have
also been utilized in cancer research for molecular
imaging. When QDs have tagged biomolecules such as
antibodies, ligands, aptamers, etc., complementing the
desired target molecule, they can be used to target
cancer cells with high sensitivity and specificity.*™* For
instance, QDs in this study were used for their shift
fluorescent properties.”” PSA is a common biomarker
for detecting prostate cancer as mentioned above, and
the diagnostic capability can be increased by
sandwiching the target antigen between a cadmium
selenium/zinc sulfate QD (CdSe/ZnS QDs) conjugated
capture anti-PSA antibody and biotinylated anti-PSA
with streptavidin and organic dye (Figure 4).° Upon
forming an immunocomplex, it will emit a fluorescent
signal that was analyzed via flow cytometry. In this
study, male serum samples from patients with different
stages of prostate cancer, benign prostatic hyperplasia,
and healthy patients were collected and assessed for
their respective PSA levels. A fluorescence shift from
the orange to the red region was observed upon
incubation with PSA-positive samples, whereas no
signal was detected in samples obtained from healthy
donors. The lowest LOD detected of free and total PSA
concentration using the QD-based microassay resulted
in 0.067 and 0.12 ng/mL, with an average detection rate
of 89 and 92%, respectively.’® In another study, glucose
-derived CDQs/gold nanocomposites (CDQ/GNC) were
used as stabilizing agent and as a reducing agent for
immunosensing target antigen; carbohydrate antigen 19-
9 (CA19-9) biomarker in pancreatic cancer samples.
The CDQ/GNC were immobilized by tagging
horseradish peroxidase enzyme labeled CA 19-9
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monoclonal antibody. CA 19-9 is a biomarker
commonly used to detect pancreatic cancer and is a
tumor-associated mucin glycoprotein antigen related to
the Lewis blood group protein.”’ This specific
biomarker was reported to be presented at the following
concentration in respective stages; la: <21 U/mL, 1b:
86 U/mL, IIa: 105 U/mL, IIb: 164 U/mL, IV: >180 U/
mL.”® The immune reaction of the sensor occurs by
trapping the target antigen with peptide bonds which
can be quantified by measuring its fluorescent intensity
(Figure 4) upon exposure with various cations, sugars,
amino acids, macromolecules (ascorbic acid, uric acid,
and caffeine), and tumor markers (CA 27-29, CA 15-3,
CA 125, and PSA). Results indicated that the
investigated species did not interfere with the CA 19-9
antigen detection and detection limit of 0.007 U/mL
with a linear concentration ranging from 0.01-350 U/
mL indicated sensitivity.”

Using the principle of immunoassay and QDs,
a sandwich-type magnetic immunoassay was fabricated
to target the cancer biomarker CEA. Aside from being
present in NSCLC, this specific biomarker is also
present in patients diagnosed with colorectal cancer.®®
Its use in early-stage detection has exhibited great
significance, since previous methods for detecting
colorectal cancer involved invasive methods such as
colonoscopy or tissue biopsy to detect the presence of
polyps and lacked sensitivity and accuracy.®***** In this
model, target antigen CEA is extracted with the help of
the amino-modified magnetic nanoparticles conjugated
with capture anti-CEA, after which the zinc-selenium
QD (ZnSe QDs) conjugated with secondary anti-CEA
sandwiched the antigen. A permanent magnet will
separate the immune reaction, and the single particle
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was analyzed via single-particle inductively coupled
plasma mass spectrometry (SP-ICP-MS) (Figure 5).
Compared to the previous immunoassay, the detection
limit for CEA exhibited a LOD of 0.006 ng/mL in
human serum samples compared to the traditional
ELISA (0.025 ng/mL).*

MAGNETIC NANOPARTICLES

This class of nanoparticles was previously used
as contrast agents for MRI imaging; however, in the
past decade, its application has tremendously changed
in drug delivery and diagnostics. These particles have
been fabricated from either metal (such as iron, cobalt,
or nickel) or are an amalgamation of metals and
polymers. One of the many advantages of magnetic
nanoparticles (MNPs) is their capacity to be
manipulated magnetically, based on the metals used in
their synthesis, using an external magnetic field.**®
Recently, MNPs have been widely used in tumor
targeting, especially superparamagnetic iron oxide
nanoparticles (SPIONs), used as contrast agents in
cancer screening.®® Regarding cancer biomarker
detection, MNPs can range from biomolecule
conjugation to bioseparation to biosensing.®’

Aside from proteins and microRNA in cancer,
circulating tumor cells (CTCs) have also played a
pivotal role in cancer metastasis and contribute to 90%
of cancer-related deaths, especially in ovarian cancer.®
Conventional methods for early-stage cancer detection
cannot be used due to the low concentration of CTCs;
however, this drawback was addressed with the help of
QDs. This sensor operates as such: (i) attachment of
biotin-bovine serum albumin-folic acid (BSA-FA) in
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Figure 4. The application of QDs in detecting cancer -specific biomarkers for early-stage detection. A) QDs with
capture anti-PSA and biotin with detection anti-PSA/streptavidin dye sandwiched PSA in a 96 well place and
quantified via flow cytometry’® B) CA 19-9 is sandwiched between GNC/QD with anti-CA 19-9/ HRP enzyme and
biotinylated detection anti-CA 19-9. Fluorometric detection of CA 19-9 was measured”’
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combination  with  streptavidin-coated = magnetic
nanoparticles. For targeting specifically CTCs, BSA is
conjugated with biotin-folic acid (FA). The biotin-BSA
-FA binds to the CTCs with the help of the
complementary binding between FA and Folate
receptor (FR), which are commonly overexpressed on
CTCs. (ii) The next step is coupling streptavidin-coated
SPIONs with the biotin on the biotin-BSA-FA-CTC
complex, forming a SPIONs-SA-biotin-CTC. This
unique complex is then isolated with the help of an
external magnetic field (Figure 6). This sensor has been
reported to have a capture efficiency below 20% in FR-
negative cells such as A549. In contrast, cells such as
SKOV3 with FR overexpression showed a capture
efficiency close to 80%, indicating that this sensor is
specific to cancer cells with FR overexpression. In
addition, this sensor can detect CTCs in whole blood,
thereby suggesting that macromolecules (albumin and
other glycoproteinsg and ions do not interfere with the
system’s operation.

Similarly, poly-dopamine-coated iron oxide
(Fe304) nanoparticles have been developed to detect
and isolate pancreatic cancer cells through Mucin 1
(MUCT) receptor detection. MUC1 are transmembrane
glycoproteins reported to have been highly expressed in
malignant tumors and  precancerous lesions.
Overexpression of this glycoprotein reduces the
adhesion of cancer cells in the outer matrix, facilitating
their metastasis in cancers such as pancreatic, lung,
breast, or prostate.””®> This study highlights the Fe304
nanoparticle modification that enables the detection of
MUCI in pancreatic cancer cells. Initially, dopamine-
coated Fe304 nanoparticles were synthesized, followed
by labeling with 6- carboxyfluorescein tagged hairpin
DNA sequences (H1-FAM and H2-FAM). The MUC1
aptamer/hybridization chain reaction (HCR) trigger
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Figure 5. The application of MNPs and QDs
combined in detecting cancer-specific biomarkers for
early-stage  detection. =~ Amine-modified = MNPs
conjugated with anti-CEA and a ZnSe QD with the
detection anti-CEA tag sandwiched CEA antigen in the
serum and analyzed via ICP-MS®
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probe (Apt-tri probe) was conjugated to the MUCI
receptor on the cancer cell to form a complex. When in
the presence of the labeled nanoparticle, i.e., dopamine-
coated Fe304 nanoparticles), quenched FAM will
hybridize the Apt-tri probe bound to the MUCI on the
cell’s surface. After which, the FAM molecules will
open as the dopamine-coating nanoparticle pulls them
off from the membrane receptor. The hairpin structure
will be opened by hybridizing the trigger and FAM
(Figure 5). The fluorescent intensity will be analyzed
within the cell and counted, resulting in a LOD as low
as 41 cells/mL. Other cell lines, such as HepG2 and
HPDE-C7 cells, were treated to this probe and resulted
in lowered fluorescent intensity when compared to
PANC-1 cells. This indicates that the modified
nanoparticle is sensitive and specific to cells
overexpressing MUCI1. The probe’s results were later
confirmed with traditional western blot and
immunohistochemistry (IHC), indicating the expression
of MUCI on cancer cells. This particular system's
sensitivity and detection ability lies with the expression
of the MUCI receptors and can be applied to a wide
variety of cancers with a dominant gene expression.”

CONCLUSION

This review showcases a small portion of the
bigger picture of how nanoparticle platforms can be
used for early-stage cancer diagnosis, which addresses
the drawbacks involved in traditional diagnostic
methods. These platforms have been reported to have
increased sensitivity and specificity against an early-
stage cancer diagnosis. The biomarkers in liquid biopsy
samples for early-stage cancer detection are typically
not present in sufficient levels for conventional
methods; the nanoparticle technology can provide a
boost at detecting these biomarkers at the lowest
concentration. In addition to gold, magnetic, and
quantum dots, there are numerous nanoparticles
systems such as lipid-based, iron, biomimetic (cellular
protein or parts like membrane-coated nanoparticles),
silica, and polymer-based, which when tagged or used
in combination to detect a specific biomarker to a
specific cancer subtype, can improve the diagnostic
efficiency. %% Biosensors can either detect cancer
cells or specific molecular biomarkers related to those
cells. In contrast, immunoassays can increase the
sensitivity of conventional biomarkers such as CEA,
miRNA, and many more,” making them efficient for
clinical use. This review discussed how various
nanoparticles can be used to detect different types of
cancers at an early stage with the help of different types
of biomarkers present in body fluids. Further research
and testing are required for these biosensors or
immunoassays in more extensive and diverse
populations to meet the regulatory guidelines.
However, this system can improve overall patient
outcomes through early detection.
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